2024/04/29 10:49 1/15 Erweiterungsmodule

Erweiterungsmodule

An den GBM können unterschiedliche Addon-Module angeschlossen werden, die eine externe Funktion bzw. externe Anwendung zur Unterstützung bereitstellen.

Notaustaster

An den GBMboost (Master/Node) kann ein Notaustaster angeschlossen werden. Der Anschluss erfolgt an der Stiftklemme J2 auf der GBMboost Platine.

Mit einem Knopfdruck kann das ganze Szenario (alle angeschlossenen Booster oder auch nur der betroffene Booster) abgeschaltet werden.

Ein weiterer Knopfdruck entsperrt wieder und der Anlagenbetrieb kann von der Software erneut angefahren werden.

Globaler Nothalt:

Sollte ein Booster über einen Notaustaster verfügen und das Feature 27 (Booster lokale Kontrolle verhindern) auf dem Wert 0 stehen, dann wirkt der globale Nothalt. **Diese Einstellung ist Werkseinstellung.**

0	Booster lokale Kontrolle verhindem (27)
139	max. Ausgangsstrom (22)
8	Abschaltzeit normal (19)

Wird der Nothalt ausgelöst, werden alle Booster am BiDiBus sofort abgeschaltet. Bei erneutem Drücken des Notaustasters werden alle Booster wieder eingeschaltet. Das erneute Starten funktioniert auch an einem anderen Notaustaster, es muss nicht am betroffenen Notaustaster gestartet werden.

Durch die Signalfolge der Status-Led (rot (lang), grün (kurz)) am betroffenen Notaustaster wird signalisiert, dass der Nothalt hier ausgelöst wurde. Alle anderen Status-Leds der Notausmodule zeigen den abgeschalteten Booster mit einer statischen roten LED an.

Dezentraler Nothalt:

Als Alternative kann das Drücken des Tasters nur an die PC-Steuersoftware gemeldet werden. Die Software entscheidet je nach definierten Einstellungen ob der lokale Abschnitt (nur betroffener Booster) hart abgeschaltet werden soll, ein Bremsen ausgelöst wird oder alle Booster auf der Anlage abgeschaltet werden. Es findet bei Tastendruck keine Abschaltung statt. Dazu muss das Feature 27 den Wert 1 besitzen.

LED-Zustände

Die Statusleuchtdiode des Notaustaster ist eine Duo-LED und zeigt mit den beiden Farben Rot und Grün verschiedene Zustände des GBMboosts an.

Farbe		Funktion / Anzeige
Grün	statisches Leuchten	alle Booster bzw. dieser Booster ist im Betrieb (abhängig vom Feature 27)
Rot	statisches Leuchten	alle Booster bzw. dieser Booster ist abgeschaltet (abhängig vom Feature 27)
1		an diesem Booster liegt ein Fehler / Überhitzung vor
Grün/Rot	Farbwechsel	an diesem Booster liegt ein Kurzschluss vor
Grün/Rot	kurz-lang	an diesem Booster wurde der Nothalt ausgelöst

Link zur Aufbauanleitung: Handbuch Addon-Module

ProgSchalt Addon

2024/04/29 10:49 3/15 Erweiterungsmodule

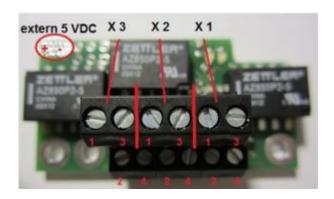
Der GBMboost Master verfügt ab der Firmware 2.1.0 die Funktion des Programmiergleis (PT). Das Programmiergleis kann in drei Varianten mit dem GBMboost Master realisiert werden: Standalone Programmer (eigener GBMboost Master), Wechselbetrieb (zwei GBMboost Masters + ProgSchalt Modul) und Mischbetrieb (ein GBMboost Master für Fahrbetrieb und Programmiergleis). Weitere Angaben zu diesen Varainten finden Sie hier.

Die Baugruppe "PROGSchalt" ist eine Relaisplatine die von einem GBM16T-Anschluss geschaltet werden kann. Mit dem Relais lässt sich der DCC-Ausgang des GBMboost von der Anlage trennen und auf ein Programmiergleis eines weiteren GBMboost Master, der als Standalone Programmer funktioniert, schalten.

Link zur Webseite: www.fichtelbahn.de/gbm_programmiergleis.html

Kehrschleifenmodul

Der GBM16T (16fach-Belegtmelder) vom GBM hat die Möglichkeit, ein Kehrschleifenmodul aufzunehmen. Mit dieser Zusatzplatine bekommt die Hardware ohne weiterer Elektronik eine automatische Kehrschleife.


Damit steht einer absolut störungsfreien Durchfahrt durch einen Kehrschleifenabschnitt, nichts mehr im Wege. Eine kostenaufwendige Hardware entfällt, weil auf dem GBM16T bereits die Sensorerfassung vorhanden ist.

Die Besonderheit ist, dass das Kehrschleifenmodul nicht nur als klassische Kehrschleife mit Sensorgleisen (ON-/OFF-Melder) und Schalten über einen DCC-Befehl funktioniert.

Die GBM16T Kehrschleife besitzt eine erweiterte Funktion mit dem Begriff "Prioritätsmelder". Damit lassen sich Abhängigkeiten unter den Sensoren realisieren. Mit dem Inhibit das über zwei weitere DCC-Adressen gesetzt und gelöscht werden kann, lässt sich die Kehrschleife blockieren.

Wie wird die Kehrschleife verkabelt / angeschlossen?

Der DCC-Fahrstrom geht oben rein (ein Paar nebeneinander) und unten wieder raus zum Fahrgleis.

Die extern 5V (die auf dem Bild eingekringelt sind) werden vom GBM16T versorgt, hier muss nichts angeschlossen werden, wenn der GBM16T eine Hilfsspannungsversorgung hat. (externes 5V Netzteil).

Die Anschlussbelegung als Beispiel an Rückmeldeausgang 6, 7 und 8:

- X1-1: DCC1 von GBM16T (z.B. Rückmelder 6)
- X1-3: DCC2 von GBM16T (z.B. Rückmelder 6)
- X1-2: DCC1 zum Gleisabschnitt B
- X1-4: DCC2 zum Gleisabschnitt B
- X2-1: DCC1 von GBM16T (z.B. Rückmelder 7)
- X2-3: DCC2 von GBM16T (z.B. Rückmelder 7)
- X2-2: DCC1 zum Gleisabschnitt C
- X2-4: DCC2 zum Gleisabschnitt C
- X3-1: DCC1 von GBM16T (z.B. Rückmelder 8)
- X3-3: DCC2 von GBM16T (z.B. Rückmelder 8)
- X3-2: DCC1 zum Gleisabschnitt D
- X3-4: DCC2 zum Gleisabschnitt D

2024/04/29 10:49 5/15 Erweiterungsmodule

Anschluß von Herzstücken in einem der umgeschaltenen Abschnitte

Befindet sich in einem der Umpolabschnitte eine Weiche mit Herzstückpolarisierung, so muß man die Zuführung des Polarisationsrelais immer von den relevanten Außenschienen dieser Weiche kommen, also von den per Kehrschleifenmodul umgeschaltenen Melderanschlüssen! Ein direkter Anschluß an den entsprechenden Melder oder direkt an DCC führt bei umgeschaltener Kehrschleife dann zu einem Kurzschluß bzw. zusätzlich zu falschen Meldungen.

Was ist eine blockierte Kehrschleife?

Für den klassischen Anwendungsfall wird diese Funktion nicht benötigt. Es ist dennoch manchmal unumgänglich, eine Weiche bzw. ein komplettes Weichenfeld in eine Kehrschleife legen zu müssen. Früher wurde die Problematik mit mehreren Kehrschleifenmodulen gelöst. Mit dem GBM16T läßt sich das mit der eingebauten Logik ohne weiteren Aufwand lösen. Damit ist mit der GBM16T Kehrschleifenerweiterung und der OneST / LightControl zum Schalten und Polarisieren der Weichenfelder eine Lösung mit wenig Aufwand gegeben, die auch schwierigen Gleisbildern gerecht wird.

Die komplette Kehrschleifenkonfiguration kann über die Debugschnittstelle am GBM16T erfolgen oder graphisch und komfortabel über das Tool "BiDiB-Monitor", das einen Zugriff auf die CV-Verwaltung des GBM16T ermöglicht.

Eine ausführliche Beispielanwendung finden Sie in dem Handbuch zum Kehrschleifenmodul.

Link zum Handbuch: Handbuch Kehrschleifenmodul

Link zur Webseite: http://www.fichtelbahn.de/gbm16t_rev.html

Anwendungsbeispiel: kleines Gleisdreieck mit blockierter Kehrschleife

Beispielhaft sei hier der im Forum öfters mal gefragte Fall einer Kehrschleife in einem Gleisdreieck behandelt, das es aufgrund seiner Größe nicht erlaubt, eine Kehrschleife innerhalb des Dreiecks anzuordnen. Durch die Funktion der blockierten Kehrschleife können die benötigten Gleise auch außerhalb der Kehrschleife liegen, dort sollte dann aber eine ausreichend große Gleislänge zur Verfügung stehen. Der Trick der folgenden Lösung besteht nun darin, dass die Kehrschleifenlogik abhängig von der Stellung der Weiche A blockiert wird, d.h. sie wird inaktiv geschaltet (Inhibit). Dieser Inaktiv-Schalter ist als virtueller Dekoder im GBM16T vorhanden. Gibt man diesem Dekoder die gleiche Adresse wie Weiche A, so erfolgt das Inaktivschalten der Kehrschleife automatisch mit dem Schalten der Weiche A.

Die Sensorik der Kehrschleife in diesem Beispiel verwendet die Abschnitte 0, 1, 5, 6 und 7.

Umgepolt werden die Abschnitte 1, 2 und 5. Der längste Zug sollte kompltett in Abschnitt 2 passen. Die restlichen Abschnitte müssen nur lang genug sein, damit die Kehrschleife bei Maximalgeschwindigkeit vor Erreichen des nächsten Abschnittes sicher umschaltet. Ich habe hier in etwa eine Loklänge genommen, falls das Erkennen zB. einer Lok mit 2 Drehgestellen wegen eines schlechten Kontakts erst mit dem hinteren Drehgestell erfolgt.

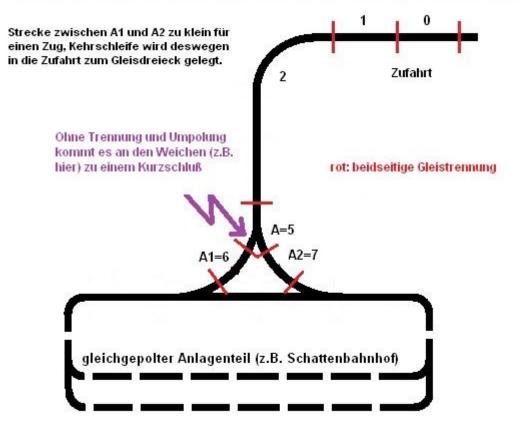
Es gibt hier 4 mögliche Zugfahrten, auf die die Kehrschleife korrekt reagieren muß.

Eine Fahrt innerhalb des unten angedeuteten Kreises erfordert keinerlei Reaktion seitens der Kehrschleife. Die Ein/Ausfahrt der Gleisdreiecks von/nach oben sei in diesem Beispiel so gepolt, als wäre der Dreiecksschenkel A2 nicht vorhanden. Im/gegen den Uhrzeigersinn bezieht sich dabei auf den unten angedeuteten Kreis von/zu dem die Züge verkehren.

Einfahrt gegen den Uhrzeigersinn (Fahrt von 0 über 1, 2, 5 nach A1/6): hier ist keine Umpolung erforderlich.

bei Einfahrt in 0 wird die KS sicherheitshalber abgeschaltet, falls sie eingeschaltet war Weiche A steht auf A1, die Blockierung ist angegeschaltet (Inhibit ein).

Einfahrt im Uhrzeigersinn: (Fahrt von 0 über 1, 2, 5 nach A2/7): hier ist eine Umpolung der KS erforderlich.


bei Einfahrt in 0 wird die KS sicherheitshalber abgeschaltet, falls sie eingeschaltet war bei Weiche A=5 wird die KS eingeschaltet, Inhibit ist aus.

Ausfahrt im Uhrzeigersinn: (Fahrt von A1/6 über 5, 2, 1 nach 0): keine Umpolung erforderlich. bei Einfahrt in A1/6 wird die KS sicherheitshalber abgeschaltet, falls sie eingeschaltet war Weiche A steht auf A1, Inhibit ein

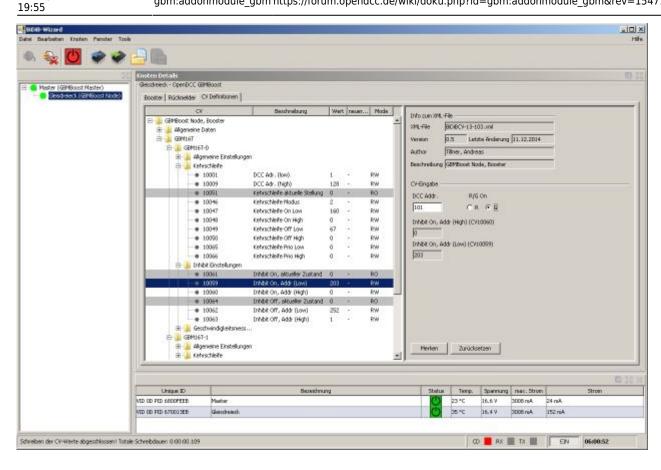
bei 1 wird die KS sicherheitshalber abgeschaltet

Ausfahrt gegen den Uhrzeigersinn: (Fahrt von A2/7 über 5, 2, 1 nach 0): Umpolung erforderlich. bei Einfahrt in A2/7 wird die KS eingeschaltet, Inhiibit ist aus.


Gleisdreieck mit zu kurzer Strecke zwischen A1 und A2 mit GBM und Inhibit

Konfiguration für den GBM, Die Weiche schaltet in diesem Beispiel auf DCC Adresse 102 (z.B. mit einem Decoder2)

2024/04/29 10:49 7/15 Erweiterungsmodule


Als erstes werden die Meldeabschnitte wie oben (4 mögliche Fahrwege) konfiguriert. Melder 2 ist der lange Abschnitt (C), dort wird nur umgepolt und nicht geschalten. Das Abschalten der Kehrschleife erfolgt mit den Meldern 0 und 1 (Kehrschleife aus, je nach Richtung), sowie Melder 6, das ist im Beispiel der Schenkel A1, in dem keine Umschaltung erforderlich ist. Die Aktivierung der Kehrschleife erfolgt je nach Fahrtrichtung auf Melder 5 oder 7.

Ohne Inhibit würde jetzt bei einer Fahrt von A1=6 kommend die Kehrschleife bei Erreichen von Abschnitt 5 (=Weiche) einschalten. Hier kommt das Inhibit zum Einsatz. Die Bedingung Inhibit On führt dazu, daß bei Erreichen des Melders 5 von Melder 6 kommend die Kehrschleife keine Umpolung durchführt. Falls die Kehrschleife durch eine Fahrt von oben nach A2=7 aktiviert wurde wird außerdem bei Umschalten der Weiche auf A1 die Kehrschleife abgeschalten und bleibt das auch nach dem Zurückschalten auf A2 bis zur weiteren Zugfahrt über diesen Schenkel aus.

Die DCC Adresse für das Inhibit errechnet sich hier wie folgt: Weichenadresse -1. R/G On ist je nachdem wo die Kehrschleife gesperrt sein soll auf R=0 oder G=1 zu setzen, das wird vom Programm zum doppelten der eingebenen Adresse. Eine eingegebene Weichenadresse von 101 mit Inhibit auf Stellung G wird also zu: 101*2+1=203, dieser Wert wird im GBM-Track gespeichert. *Tipp: ob die richtige Weichenadresse für Inhibit benutzt wird, kann man leicht mit dem am GBM16T angeschlossenen Debugkabel (FTDI-Kabel) kontrollieren: dort wird eine entsprechende Meldung ausgegeben.*

Last update: 2019/01/10

Blockierte Kehrschleife in Rocrail

Vorweg: Dies ist sicher nur ein möglicher Weg, er ermöglicht aber auch, die Blockierung manuell zu testen ohne die eigentliche Weiche umzuschalten. Wichtig ist, daß die Umschaltung der Kehrschleife selbst korrekt funktioniert, sonst sucht man ewig nach Fehlern, die dann an den Aktionseinstellungen vermutet werden, das also zuerst ordentlich testen!

Für die Blockierung habe ich einfach eine neue Weiche in Rocrail angelegt.

Diese wird über den Reiter "Schnittstellen" so eingestellt wie eine Weiche, die über normale DCC Decoder geschaltet wird. Die Adresse ist in diesem Fall die, die am GBM-T eingestellt wurde (siehe Adressierung weiter oben). Zum Test kann man schauen, ob beim Schalten der Weiche die Blockierung schon funktioniert, z.B, indem man einen Waggon mit Widerstandsachsen über die Abschnitte der KS schiebt bis die KS schaltet und dann die Blockierung aktiviert. Die KS müßte dann zurückschalten.

Funktioniert die Blockierung, so kommt man zum zweiten Schritt, den Aktionen. Man braucht hier zwei Aktionen, nämlich eine, die die KS blockiert und eine, die diese Blockierung wieder aufhebt wenn die Weiche so geschalten ist, daß die Kehrschleife arbeiten soll. Die Aktionen erreicht man über das Menü Tabellen-Aktionen. Wir legen nun die beiden Aktionen an, indem wir eine Kennung und eine Beschreibung eintragen, dann im Reiter Definition: Typ→Weiche, Kennung→Name der oben angelegten Weiche. Bei mir soll die Kehrschleife blockiert sein, wenn die Weiche gerade steht, also Befehl→straight. Dann übernehmen und eine zweite Aktion anlegen, Befehl→turnout. Auch diese Aktion speichern, weiter zum finalen Schritt.

Zuweisung der Aktionen zur echten Weiche: Eigenschaften→Aktionen, dort Kennung→Aktion für

2024/04/29 10:49 9/15 Erweiterungsmodule

Gerade auswählen, Status→Straight, dann auf Bedingungen, Haken bei muß wahr sein, Typ→Weiche, Kennung→Name der echten Weiche, Status→Straight. Alles übernehmen und auch die zweite, gegensätzliche Aktion so einrichten und abspeichern. Auch das Speichern bei der Weiche selbst nicht vergessen.

Die Aktionen funktionieren, wenn beim Schalten der echten Weiche gleichzeitig auch die neue Weiche entsprechend mitschaltet. Die neue Weiche selbst kann aber auch umgelegt werden (KS blockieren/Blockierung freigeben), wenn man sie manuell bedient. Möchte man versehentliche Fehlbedienungen im Manuellmodus vermeiden, so kann man im Allgemein Reiter den Haken bei bedienbar herausnehmen oder mit Entfernung des Hakens bei anzeigen unsichtbar machen, die Aktionen wirken trotzdem.

Damit müßte alles funktionieren und man kann die Kehrschleife im Realbetrieb testen.

GBM_DC/DC Modul

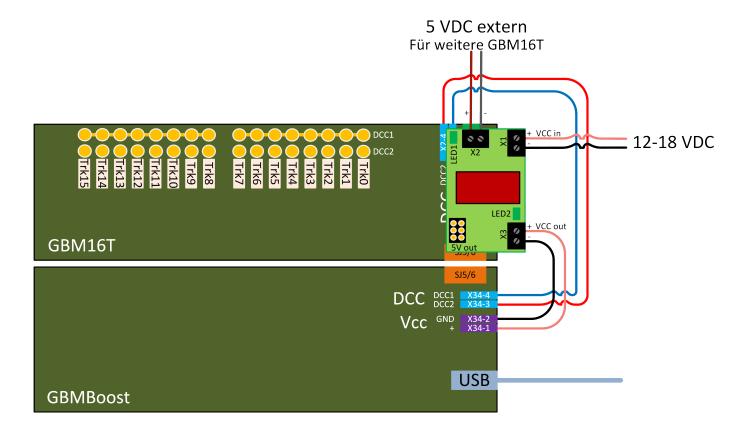
Der GBM16T kann an eine externe 5V Versorgung angeschlossen werden. Ist dies der Fall, bleibt der GBM16T auch bei abgeschaltetem Booster / Fahrstrom im Betrieb. Ohne dieser Hilfsspannung erzeugt der GBM16T seine notwendige Versorgungsspannung aus dem DCC-Fahrstrom.

Die Vorteile einer 5V-Hilfsspannung sind, dass auch noch im Kurzschlussfall bzw. bei abgeschaltetem Booster, eine lückenlose Gleisüberwachung der Abschnitte möglich ist.

Der Nachteil einer externen 5V-Hilfsspannung ist, dass für diese Versorgung ein eigenständiges 5V Steckernetzteil notwendig ist. Die 5V Versorgungsspannung muss potentialgetrennt von der GBMboost-Spannung erzeugt werden. Die beiden Spannungen dürfen kein gemeinsames GND haben. Für jeden weiteren Boosterabschnitt wird eine eigene 5V Versorgung benötigt - es können mit einem externen 5V Netzteil nur die GBM16T-Baugruppen versorgt werden, die mit dem gleichen Booster verbunden sind.

Abhilfe mit dem GBM_DC/DC Modul

Mit der Hilfsspannungserweiterungsplatine **GBM_DC/DC** kann die 5V Hilfsspannung aus der GBMboost Versorgungsspannung gewonnen werden. Auf der Platine befindet sich ein isolierter DC/DC


Wandler, der die notwendige Trennung gewährleistet. Kommt diese Huckepack Platine auf dem GBM16T zum Einsatz, kann ein externes 5V Netzteil entfallen. Das GBM_DC/DC Modul kann nur im Inselbetrieb verwendet werden. Es darf nur mit den GBM16T Modulen verbunden werden, die am gleichen Booster angeschlossen sind.

Das GBM_DC/DC Modul kann alleine oder zusammen mit einem Kehrschleifenmodul auf einem GBM16T montiert werden. Die notwendigen Stiftleisten, Buchsenleisten und Stapelleisten sind im Reichelt-Warenkorb vorhanden. Mit Hilfe von Abstandshaltern und Bohrungen in der Platine, wird eine stabile Montage gewährleistet.

Wie wird die Baugruppe angeschlossen?

Die 12VDC-18VDC Versorgungsspannung für den GBMboost kann an der Klemme X1 angeschlossen werden. Über die Klemme X3 wird die Versorgung weiterverbunden zum GBMboost Klemme X34, auf der GBMboost Baugruppe.

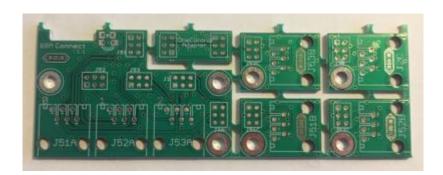
2024/04/29 10:49 11/15 Erweiterungsmodule

Der Huckepack - GBM16T erhält über die interne 6-polige Stiftleiste seine 5V Hilfsspannung. Müssen weitere GBM16T Module (die mit dem gleichen Booster verbunden sind) mit einer 5V Hilfsspannung versorgt werden, kann diese Versorgung über die dritte Klemme X2 abgegriffen werden.

Auf der Baugruppe befinden sich noch zwei LEDs:

LED2: – Die grüne LED leuchtet, wenn an der Klemme X1 oder X3 eine Versorgungsspannung zwischen 10-30V anliegt.

LED1: – Die grüne LED leuchtet, wenn aus der angelegten VCC Spannung eine 5V Spannung erzeugt wurde.


GBM-Connect

Alternative zum Flachbandkabel, wenn man den GBM16T mit dem GBMboost verbinden will.

Der GBM-Connect bietet eine verpolungssichere Alternative zum Flachbandkabel mit den 2×3-poligen Steckern in Form einer steckbaren Verbindung mit RJ12 Kabel (6P6C). Es ist kann beim Zusammenstecken dann nicht mehr zum versetzt aufstecken des Kabels kommen, was das hohe Risiko eines Prozssordefektes reduziert.

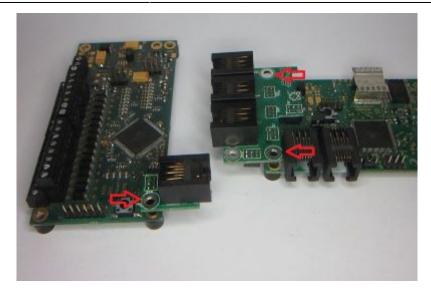
Der GBM-Connect besteht aus einer größeren Platine, die auf den GBMBoost aufgesteckt wird und mehreren kleinen Platinen. Pro anzuschließendem GBM-T wird eine der kleineren Platinen benötigt, im Normalfall also max. 3. Möchte man auch den Notaus-Taster mit RJ12 Kabel ausstatten, so benötigt man noch 2 weitere kleine Platinen. Eine davon wird unter die große gesteckt, die andere kommt hinten an den Notaus-Taster.

Weiters gibt es die Möglichkeit, auch einen an der OneControl hängenden GBM-T mit einer solchen Verbindung zu versehen, dafür sind ebenfalls 2 kleine Platinen notwendig, außerdem benötigt man noch eine Adapterplatine, da auf der OneControl der GBM-T Anschluß leider um 180° verdreht ist. Die kleine Adapterplatine behebt dieses Manko. Weitere Baugruppen, die mit der OneControl Adapterplatine angeschlossen werden können: OneDT und ST4. Die OneST müßte man prüfen, da liegt der GBM-T sehr weit innen und evtl sind die Servoanschlüsse im Weg.

Hier nun der aufgebaute GBM-Connect mit 3xGBM-T und den beiden Platinen für den Notaus Taster.

Last update: 2019/01/10 19:55

Anschluß des GBM-Connect


Bild des fertigen GBM-Connect, aufgesteckt auf den GBMBoost mit der Notaus-Taster Option.

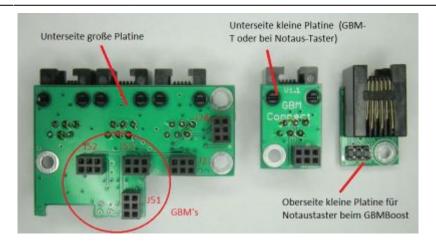
Der GBM-Connect wird auf die 4 Stiftleisten am GBMBoost (J51, J52, J53 und J2) aufgesteckt. Damit sind alle 3 GBM-T Verbindungen und der Notaus-Anschluß auf der GBM-Connect Platine anliegend. Die drei Anschlüsse für die GBM-T sind direkt über RJ12 Buchsen verfügbar. Der Notaus-Taster hat seitlich seine Anschlußmöglichkeit. Möchte man ihn nutzen, so muß man eine kleine Platine mit obenliegender 2×3-er Stiftleiste bestücken und die entsprechende Buchsenleiste unten an der großen Platine. Man kann könnte auch die Stiftleiste oben auf die große Platine löten und den Notaus damit wie bisher per Flachbandkabel anschließen.

Zur Befestigung: die kleinen Platinen am GBM-T haben eine Befestigungsbohrung, die deckungsgleich mit einer der Bohrungen am GBM-T ist. Mit Hilfe von 6mm Distanzhülsen oder einer 5mm Distanzhülse (z.B. Reichelt DK 5MM) und Beilagscheiben) kann man die Bohrung nutzen, um GBM-T und die kleine Platine fest am Untergrund zu verschrauben. Die große Platine am GBMBoost hat in Summe 3 Bohrungen, zwei davon sind deckungsgleich mit dem GBMBoost und können wieder mit 6mm Distanzhülsen montiert werden. Die dritte Bohrung ist bei Montage einer kleinen Platine unter der großen (für den Notaus) ebenfalls deckungsgleich. Die kleine Platine paßt dabei genau neben den GBMBoost. An der OneControl gibt es die Möglichkeit leider nicht. Hier muß auf der kleinen Platine die Stiftleiste nach oben bestückt werden, auf die Adapterplatine kommen zwei Buchsenleisten, wovon eine dann auf der OneControl steckt und die zweite auf der kleinen Platine.

2024/04/29 10:49 13/15 Erweiterungsmodule

Anmerkung: Wird der GBM-Connect auf einem GBMBoost-Master Variante 2 (externe Einspeisung des DCC Signals) benutzt, so muß man die große Platine im Bereich der Anschlußklemme für das externe DCC Signal etwas ausschneiden. Obwohl die Leiterbahnen ein Stück von der betroffenen Stelle entfernt sind sollte man trotzdem vorsichtig vorgehen, nicht daß man abrutscht und evtl. eine der Leiterbahnen zerkratzt.

Aufbau des GBM-Connect


Die GBM-Connect Platinen befinden sich aktuell in V1.1. Die Bauteile sind alle bei Reichelt erhältlich und müssen selbst bestückt werden. Die große Platine hat eine Betriebsspannungsanzeige per LED, diese zeigt das Vorhandensein der 3,3V Versorgung am GBMBoost an, wenn die Platine korrekt aufgesteckt wurde und der GBMBoost mit Strom versorgt ist. Die LED und der entsprechende Vorwiderstand sind als 1206er SMDs im Warenkorb, man kann aber auch eine bedrahtete LED mit Vorwiderstand einbauen (beide stehend). Warenkörbe:

- Reichelt Warenkorb für große Platine und 3xGBM-T
- Reichelt Warenkorb für OneControl <=> GBM-T oder Notaus-Taster

Der Warenkorb für den Notaus-Taster wird, wenn diese Option benötigt/gewünscht ist einfach zusätzlich bestückt. Bei der Bestückung geht man am besten wie folgt vor:

Als erstes bestückt man die LED (Anode auf der linken Seite bei J51) und den Vorwiderstand (am Platinenrand) in SMD. Bei bedrahteten Bauteilen geht das nachher auch noch ganz gut. Anschließend steckt man die 2×3-er Buchsenleisten von unten durch die Platine und lötet sie auf der Oberseite fest. Zu bestücken sind J51, J52 und J53. Achtung: J51 ist der oben quer liegende Verbinder! Möchte man auch den Notaus-Taster über ein RJ12 Kabel führen, so sind auch J2 und J2A zu bestücken, genau so wie die anderen Buchsenleisten. Danach kommen die drei RJ12 Buchsen dran. Diese von oben durch die Platine stecken und festdrücken, bis die Plastiknasen einrasten. Dann kann man sie bequem festlöten.

Last update: 2019/01/10 19:55

Bei den drei GBM-T Platinen am besten erst die 2×3-polige Buchsenleiste von unten durch die Platine stecken und oben festlöten, dann umdrehen und die RJ12 Buchse durchstecken und festlöten. Die kleine Platine auf Seiten des Notaus Tasters wird identisch bestückt.

Die Oberseite der Platinen ist an den weißen Beschriftungen erkennbar (J51, J2C usw.), die große Platine hat unten garkeine Beschriftungen, die kleinen Platinen sind unten mit GBM-Connect V1.1 beschriftet.

Die kleine Platine bei der OneControl bzw. für den Notaustaster auf Seiten des GBMBoost ist leicht anders zu bestücken. Dort wird eine 2x3er Stiftleiste auf der Oberseite eingesteckt und auf der Unterseite verlötet. Die RJ12 Buchse ist wieder wie gewohnt auf der Oberseite zu bestücken und auf der Unterseite zu verlöten.

Die OneControl Adapterplatine bekommt 2 Stück 2x3er Buchsenleisten von unten durch die Platine gesteckt und auf der Oberseite verlötet, dann kann sie einfach auf OneControl und kleine Platine wie eine Brücke aufgesteckt werden.

RJ12 Verbindungskabel gibt es in der passenden Länge leider nicht bei Reichelt. Man kann sie entweder selbst crimpen oder in diversen Längen im Internet bestellen (z.B. Amazon, Ebay, Aliexpress,...), wichtig ist, daß das Kabel 6 polig belegt ist. Am besten sucht man nach: RJ12 6P6C

From:

https://forum.opendcc.de/wiki/ - BiDiB Wiki

Permanent link:

 $https://forum.opendcc.de/wiki/doku.php?id=gbm:addonmodule_gbm\&rev=1547146500$

Last update: 2019/01/10 19:55

